Direct Use of Esters in the Mukaiyama Aldol Reaction: A Powerful and Convenient Alternative to Aldehydes

LETTERS 2012 Vol. 14, No. 4 1168–1171

ORGANIC

Yoshihiro Inamoto, Yoshihiro Nishimoto, Makoto Yasuda, and Akio Baba*

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

baba@chem.eng.osaka-u.ac.jp

Received January 18, 2012

ABSTRACT

An indium triiodide catalyst promoted the direct transformation from esters to β -hydroxycarbonyl compounds using hydrosilanes and silyl enolates by a one-stage process. Various esters were applicable, and the high chemoselectivity of this system brings compatibility to many functional groups: alkenyl, alkynyl, chloro, and hydroxy.

The cross-aldol reaction is one of the most representative tools in organic chemistry because produced β -hydroxycarbonyl compounds play an important role in medicinal and agricultural chemicals. In particular, the Mukaiyama aldol reaction using aldehydes and silyl enolates is of central importance.¹ While aldehydes are versatile electrophiles, some have problems with stability and storage. In this context, we sought to combine esters and hydrosilanes instead of aldehydes, where the simple treatment of both reagents and silyl enolates in the presence of a catalyst would achieve a Mukaiyama aldol addition (Figure 1). Yet, the scarcity of reports on the selective hydrosilylation of esters into aldehydes under catalytic conditions indicates the difficulty of this alternative route using esters.² Recently, the InBr₃-catalyzed hydrosilylation of esters into the corresponding ethers via no formation of aldehydes was investigated.³ Even in the case of an active metal hydride, there is only one example of the use of DIBALH. However, a two-stage process, where the completion of the DIBALH addition to esters was followed by a treatment with silyl enolates, was required.^{4a} Recently, we reported some examples of the removal of the alkoxy moiety of esters: hydroallylation⁵ and Friedel–Crafts acylation.⁶ In particular, part of the hydroallylation results strongly suggested that esters would be a promising alternative to aldehydes. Herein, we wish to report the direct synthesis of β -hydroxycarbonyl compounds from esters, hydrosilanes, and silyl enolates, developing a practical alternative to the Mukaiyama aldol reaction using aldehydes. This system does not require a multistage process.

Figure 1. A conceivable strategy in this paper.

^{(1) (}a) Mukaiyama, T.; Narasaka, K.; Banno, K. *Chem. Lett.* **1973**, 1011–1014. (b) Mukaiyama, T.; Banno, K.; Narasaka, K. *J. Am. Chem. Soc.* **1974**, *96*, 7503–7509. (c) *Modern Aldol Reactions*; Mahrwald, R., Ed.; Wiley-VCH: Weinheim, 2004; Vol. 1, p 2.

^{(2) (}a) Igarashi, M.; Fuchikami, T. Tetrahedron Lett. 2001, 42, 2149–2151.
(b) Nakanishi, J.; Tatamidani, H.; Fukumoto, Y.; Chatani, N. Synlett 2006, 869–872.
(c) Ojima, I.; Kumagai, M.; Nagai, Y. J. Organomet. Chem. 1976, 111, 43–60. For reduction of carboxylic acids and carboxylic acid derivatives to aldehydes, see: (d) Fukuyama, T.; Lin, S.-C.; Li, L. J. Am. Chem. Soc. 1990, 112, 7050–7051.
(e) Kimura, M.; Seki, M. Tetrahedron Lett. 2004, 45, 3219–3223.
(f) Zakharkin, L. I.; Khorlina, I. M. Tetrahedron Lett. 1962, 14, 619–620.
(g) Kim, M. S.; Choi, Y. M.; An, D. K. Tetrahedron Lett. 2007, 48, 5061–5064.
(h) Nahm, S.; Weinreb, M. Tetrahedron Lett. 1981, 39, 3815–3818.

⁽³⁾ Sakai, N.; Moriya, T.; Konakahara, T. J. Org. Chem. 2007, 72, 5920–5922.

The reaction using methyl ester 1a (1 mmol), HSiMe₂Ph (1.5 mmol), and dimethylketene trimethylsilyl methyl acetal 2a (1.5 mmol) in CH₂Cl₂ at rt was most effectively catalyzed by InI_3 to give the desired β -hydroxycarbonyl compound 3aa in 92% yield with a negligible amount of β -methoxycarbonyl compound **4aa** (Table 1, entry 1). The use of InBr₃ catalyst produced a low yield (entry 2). The higher Lewis acidity of InBr₃ than that of InI₃ lowers the turnover frequency because of the stronger deactivation by the coordination of O-atoms of starting materials and products. Almost the entire amount of starting ester 1a was unreacted in the runs using other indium compounds (entries 3-5). Also, representative Lewis acids such as $BF_3 \cdot OEt_2$ and $AlCl_3$ were ineffective.⁷ In the case of Ti-(OiPr)₄,⁸ $B(C_6F_5)_3$,⁹ and $Zn(OAc)_2$,¹⁰ which have reportedly reduced esters using hydrosilane, the desired product **3aa** was not gained efficiently (entries 6-8). In the case of the InI_3 catalyst, the salient features are as follows: (i) the produced ester 3aa did not incur further nucleophilic additions; (ii) despite one-stage treatment, no generation of the reduction products 5 and 6 was observed, which is a critical problem in the hydroallylation of esters;^{5,11} and (iii) the lack

 Table 1. Reaction of Ester 1a with HSiMe₂Ph and Ketene Silyl

 Acetal 2a in the Presence of Lewis Acid Catalyst^a

		yield/ $\%^b$					
entry	catalyst	3aa	4aa	5	6		
1	InI ₃	92	1	0	0		
2	InBr ₃	17	1	0	0		
3^c	InCl ₃	0	0	0	0		
4^c	In(OTf) ₃	0	0	0	0		
5^c	In(OH) ₃	0	0	0	0		
6^c	$Ti(OiPr)_4$	0	0	0	0		
7	$B(C_{6}F_{5})_{3}$	17	0	45	0		
8^c	$Zn(OAc)_2$	0	0	0	0		

^{*a*} Reaction conditions: **1a** (1 mmol), HSiMe₂Ph (1.5 mmol), **2a** (1.5 mmol), catalyst (0.05 mmol), CH₂Cl₂ (1 mL), rt, 2 h. ^{*b*} Yields were determined by ¹H NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal standard. ^{*c*} > 90% of **1a** was recovered.

(4) (a) Kiyooka, S.; Shirouchi, M. J. Org. Chem. 1992, 57, 1–2. For the use of DIBAL and other nucleophiles with esters, see: (b) Polt, R.; Peterson, M. A.; DeYoung, L. J. Org. Chem. 1992, 57, 5469–5480. (c) Burke, S. D.; Deaton, D. N.; Olsen, R. J.; Armistead, D. M.; Blough, B. E. Tetrahedron Lett. 1987, 28, 3905–3906. (d) Ishihara, T.; Hayashi, H.; Yamanaka, H. Tetrahedron Lett. 1993, 34, 5777–5780. (e) Ishihara, T.; Takahashi, A.; Hayashi, H.; Yamanaka, H.; Kubota, T. Tetrahedron Lett. 1998, 39, 4691–4694. (f) Hove, T. H.; Kopel, L. C.; Ryda, T. D. Synthesis 2006, 1572–1574. (g) Yamazaki, T.; Kobayashi, R.; Kitazume, T.; Kubota, T. J. Org. Chem. 2006, 71, 2499–2502.

of formation of ether derivatives such as **4aa** and **6** provided an interesting contrast to the reduction of esters to ethers with the $InBr_3/HSiEt_3$ system reported by Sakai.³

Table 2 summarizes the scope and limitation of applicable esters 1. The present system is highly valuable as an alternative for the Mukaiyama aldol reaction, because esters 1b and 1c, corresponding to acetaldehyde and phenylacetaldehyde, respectively, were applicable (entries 1 and 2). In general, these aliphatic aldehydes are labile and too difficult to handle.¹² The product 3da was also isolated in 92% yield from the reaction using ester 1d possessing a cyclohexyl group near the carbonyl moiety (entry 3). In the case of the sterically hindered ester 1e, a good result was obtained by using H₃SiPh instead of HSiMe₂Ph (entries 4 and 5). The reaction of methyl benzoate 1f resulted in a low yield due to the low electrophilicity of aromatic esters (entry 6). The transformation of ester 1g gave 3ga with a

Table 2. Scope and Limitation of Esters $\mathbf{1}^a$

R ¹ 1a	OMe ^{+ HSiMe} 2Ph +		OMe Inl ₃ (5 mol %) OMe CH ₂ Cl ₂ , rt R		`OMe
entry	ester 1		product 3		yield / % ^b
1	OMe	1b	OH O OMe	3ba	53 (83°)
2	PhOMe	1¢	Ph OH O OMe	3ca	69
3	OMe	1d	OH O OMe	3da	92
4^d	O L	1e	он о	3ea	6 ^c
5 ^e		1e		3ea	60
6 ^e	OMe	1f	OH O OMe	3fa	23
7 ^f	O O Ph	1g	OH O	3ga	79 ^g
8	O () () () () () () () () () () () () ()	1h		3ha	55
9⁄	OMe OMe	1i	OH O OMe OMe	3ia	55
10	MeO (H3 OMe	1j		3ja	80
11		1k	CI 4 OMe	3ka	76

^{*a*} Reaction conditions: **1** (1 mmol), HSiMe₂Ph (1.5 mmol), **2a** (1.5 mmol), InI₃ (0.05 mmol), CH₂Cl₂ (1 mL), rt, 2 h. ^{*b*} Isolated yield. ^{*c*} Yield was determined by ¹H NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal standard. ^{*d*} HSiMe₂Ph (3 mmol), **2a** (3 mmol), 12 h. ^{*c*} H₃SiPh (3 mmol), **2a** (3 mmol), 12 h. ^{*f*} HSiMe₂Ph (2 mmol), **2a** (2 mmol), 5 h. ^{*g*} anti/syn = 92:8.

high *anti*-diastereoselectivity (entry 7). Alkenyl, alkynyl, methoxy, and chloro groups survived the conditions (entries 8-11). The above-mentioned outcomes suggest that the high chemoselectivity of this work can be applied to various fields such as natural-product synthesis.¹³

The effects of alkoxy moieties of ester 1 and hydrosilanes (HSi) were investigated in Table 3. Unlike the exclusive formation of **3aa** using methyl ester **1a**, the reaction of isopropyl ester **1l** with HSiMe₂Ph and ketene silyl acetal **2a** furnished the mixture of β -hydroxycarbonyl product **3aa** and β -isopropoxycarbonyl **4la** in 89% and 11% yields, respectively (entries 1 and 2). The ratio was almost reversed by the usage of H₃SiPh to produce the mixtures of **3aa** and **4la** in 20% and 80% yields, respectively (entry 3). In contrast, **1a** provided β -hydoxycarbonyl product **3aa** selectively even in the case of H₃SiPh (entry 5). Treatment of HSiEt₃ and **1a** gave **3aa** along with a negligible amount of **4aa** (entry 6). Ethyl ester **1m** also showed high selectivity

Table 3. Effects of Alkoxy Moieties of Ester 1 and Hydrosilanes^a

					produ	products/ $\%^b$	
entry		ester 1		HSi	3	4	
1	$R^2 =$	Me	1a	$\mathrm{HSiMe_2Ph}$	92	1	
2		$i \Pr$	11	$\mathrm{HSiMe_2Ph}$	89	11	
3		$i \Pr$	11	H_3SiPh	20	80	
4		$i \Pr$	11	$HSiEt_3$	52	5	
5		Me	1a	H_3SiPh	75	7	
6		Me	1a	$HSiEt_3$	90	1	
7		\mathbf{Et}	1m	$HSiMe_2Ph$	83	1	
8		\mathbf{Et}	1m	HSiEt_3	81	2	

^{*a*} Reaction conditions: **1** (1 mmol), HS*i* (1.5 mmol), **2a** (1.5 mmol), InI₃ (0.05 mmol), CH₂Cl₂ (1 mL), rt, 2 h. ^{*b*} Yields were determined by ¹H NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal standard.

(5) Nishimoto, Y.; Inamoto, Y.; Saito, T.; Yasuda, M.; Baba, A. Eur. J. Org. Chem. 2010, 3382–3386.

(6) Nishimoto, Y.; Babu, S. A.; Yasuda, M.; Baba, A. J. Org. Chem. 2008, 73, 9465–9468.

(7) See Supporting Information for the investigation of typical Lewis acids.

(8) (a) Berk, S. C.; Buchwald, S. L. J. Org. Chem. **1992**, *57*, 3751–3753. (b) Reding, M. T.; Buchwald, S. L. J. Org. Chem. **1995**, *60*, 7884–7890.

(9) (a) Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. **1996**, *118*, 9440–9441. (b) Parks, D. J.; Blackwell, J. M.; Piers, W. E. J. Org. Chem. **2000**, *65*, 3090–3098.

(10) Das, S.; Möller, K.; Junge, K.; Beller, M. Chem.—Eur. J. 2011, 17, 7417–7417.

(11) The reaction of esters with hydrosilanes and allylsilanes in the presence of InI_3 catalyst produced the mixture of homoallylic alcohol and primary alcohol in a single treatment. A drop treatment for hydrosilane should be required to selectively obtain homoallylic alcohol. See ref 5.

1170

for β -hydroxycarbonyl product **3aa** (entries 7 and 8). These results suggested that a small alkoxy moiety leads to the selective formation of β -hydoxycarbonyl compound **3**.

A plausible mechanism is illustrated in Scheme 1. First, InI₃-catalyzed hydrosilylation of methyl ester 1 takes place to generate acetal intermediate $7^{3,5}$ Next, the selective interaction between InI₃ and the methoxy moiety promotes the elimination of the methoxy moiety, due to a less steric hindrance, to afford either oxonium ion 8 or aldehyde 9. Finally, the reaction with silyl enolate 2 produces β -siloxycarbonyl compound 10, along with the regeneration of InI₃.¹⁴ The effective nucleophilic attack of 2 in a timely manner may prevent the reduction of the electrophilic intermediate (8 or 9) by hydrosilane to achieve a single treatment of all substrates. The stereochemistry of **3ga** was well accounted for by the Felkin–Anh model for oxonium cation 8 or aldehyde 9 (Table 2, entry 7).¹⁵

The one-step transformation from mandelic acid ester 1n to β -hydroxy- γ -lactone 12 with high stereoselectivity was

(12) Ariza, X.; Asins, G.; Garcia, J.; Hegardt, F. G.; Makowski, K.; Serra, D.; Velasco, J. J. Label. Radiopharm. 2010, 53, 556–558.

(13) For examples of the total synthesis in which the reduction of a carboxylic acid derivative to aldehyde followed by the Mukaiyam aldol reaction was carried out, see: (a) Evans, D. A.; Black, W. C. J. Am. Chem. Soc. **1993**, 115, 4497–4513. (b) Evans, D. A.; Trotter, B. W.; Côté, B.; Coleman, P. J. Angew. Chem., Int. Ed. **1997**, 36, 2741–2744. (c) Trost, B. M.; Sieber, J. D.; Qian., W.; Dhawan, R.; Ball, Z. T. Angew. Chem., Int. Ed. **2009**, 48, 5478–5481.

(14) The transformation from 10 to β -hydroxycarbonyl compound 3 is performed by TBAF in the post-treatment.

(15) (a) Heathcock, C. H.; Flippin, L. A. J. Am. Chem. Soc. **1983**, 105, 1667–1668. (b) Mori, I.; Ishihara, K.; Flippin, L. A.; Nozaki, K.; Yamamoto, H.; Bartlett, P. A.; Heathcock, C. H. J. Org. Chem. **1990**, 55, 6107–6115. (c) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. **1997**, 97, 2063–2192 and references therein.

(16) Since β -hydroxy- γ -lactones are key intermediates in the synthesis of natural products, a large number of studies have reported their preparation; see: (a) Nacro, K.; Gorrichon, L.; Escudier, J.-M.; Baltas, M. *Eur. J. Org. Chem.* **2001**, 4247–4258. (b) Karisalmi, K.; Koskinen, A. M. P. *Synthesis* **2004**, *9*, 1331–1342. (c) Ghosh, A. K.; Kass, J.; Anderson, D. D.; Xu, X.; Marian, C. Org. Lett. **2008**, *10*, 4811–4814.

(17) β-Hydroxy-γ-lactone was prepared from the protected α-hydroxy aldehydes by the Mukaiyama aldol reaction; see: (a) Kiyooka, S.; Kira, H.; Hana, M. A. *Tetrahedron Lett.* **1996**, *37*, 2597–2600. (b) Kita, Y.; Tamura, O.; Itoh, F.; Yasuda, H.; Kishino, H.; Ke, Y. Y.; Tamura, Y. J. Org. Chem. **1988**, *53*, 554–561.

Scheme 2. One-Step Transformation from Mandelic Acid Ester In to β -Hydroxy- γ -lactone 12

demonstrated (Scheme 2).¹⁶ In the case of the Mukaiyama aldol reaction, multistep syntheses involving protection of the hydroxy moiety in unstable α -hydroxyaldehydes should be performed.¹⁷ The stereochemistry of product **12** was explained by the Cram chelate model of 1,2-induction in the reaction of the corresponding intermediate such as oxonium cation **8** or aldehyde **9** with ketene silyl acetal **2a**.¹⁸

Table 4 shows the scope of silyl enolates 2. Diethyl- and phenylketene silyl acetal (2b and 2c) applied well to the present system (entries 1 and 2). The reaction of carboxylic acid derived ketene silyl acetal 2d also furnished β -hydroxycarboxylic acid 3ad in high yields (entry 3). The utilization of 1l, H₃SiPh, and 2d resulted in β -isopropoxycarboxylic acid 4ld as a major product (entry 4). The employment of silyl enol ethers is a challenging subject because the produced β -oxyketone is more sensitive to nucleophilic attack than starting esters. This issue was resolved by the introduction of HSiMePh₂ and silyl enol ethers such as 2e and 2f, leading to the products 3ae and 3af possessing steric hindrance around the carbonyl group to avoid overreaction (entries 5 and 6).

In conclusion, we have established the first direct introduction of esters into the Mukaiyama aldol reaction catalyzed by InI_3 . Various types of esters and silyl enolates were applicable, and the high chemoselectivity lent compatibility to many functional groups. In addition, we demonstrated the replacement of unstable and difficult to handle aldehydes such as acetaldehyde, phenylacetaldehyde, and an α -hydroxyaldehyde with the corresponding esters. **Table 4.** Scope and Limitation of Silyl Enolates 2^a

entry	Silyl enolate 2		product 3 or 4		yield / % ^b
1	OSiMe ₃ Et Et	2b		3ab	69
2	OSiMe ₃ OMe Ph	2c [°]	OH O R ¹ OMe Ph	3ac	94 ^d
3	OSiMe₃	2d		3ad	69
4 ^{<i>e</i>}	OSiMe ₃	2d		4ld	75 ^f
5 ^g	OSiMe ₃	2e		3ae	30
6 ^g	OSiMe ₃ Ph	2f		3af	34

^{*a*} Reaction conditions: **1a** (1 mmol), HSiMe₂Ph (1.5 mmol), **2a** (1.5 mmol), InI₃ (0.05 mmol), CH₂Cl₂ (1 mL), rt, 2 h. ^{*b*} Isolated yields. ^{*c*} E/Z = 76:24 ^{*d*} Diastereomer ratio 53:47. ^{*e*} **11** (1 mmol), H₃SiPh (1.5 mmol). ^{*f*} **3ad** was obtained in 19% yield determined by ¹H NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal standard. ^{*g*} HSiMePh₂ (3 mmol), **2** (3 mmol), 5 h.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (Nos. 22106527, 23105525) and Challenging Exploratory Research (No. 23655083) from the Ministry of Education, Culture, Sports, Science and Technology (Japan). I.Y. thanks the Global COE Program of Osaka University.

Supporting Information Available. Experimental procedures and characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

^{(18) (}a) Cram, D. J.; Kopecky, K. R. J. Am. Chem. Soc. **1959**, 81, 2748–2755. (b) Reetz, M. T. Acc. Chem. Res. **1993**, 26, 462–468 and references therein.

The authors declare no competing financial interest.